Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
Signal Transduct Target Ther ; 7(1): 266, 2022 08 03.
Article Dans Anglais | MEDLINE | ID: covidwho-1972575

Résumé

Defective interfering genes (DIGs) are short viral genomes and interfere with wild-type viral replication. Here, we demonstrate that the new designed SARS-CoV-2 DIG (CD3600) can significantly inhibit the replication of SARS-CoV-2 including Alpha, Delta, Kappa and Omicron variants in human HK-2 cells and influenza DIG (PAD4) can significantly inhibit influenza virus replication in human A549 cells. One dose of influenza DIGs prophylactically protects 90% mice from lethal challenge of A(H1N1)pdm09 virus and CD3600 inhibits SARS-CoV-2 replication in hamster lungs when DIGs are administrated to lungs one day before viral challenge. To further investigate the gene delivery vector in the respiratory tract, a peptidic TAT2-P1&LAH4, which can package genes to form small spherical nanoparticles with high endosomal escape ability, is demonstrated to dramatically increase gene expression in the lung airway. TAT2-P1&LAH4, with the dual-functional TAT2-P1 (gene-delivery and antiviral), can deliver CD3600 to significantly inhibit the replication of Delta and Omicron SARS-CoV-2 in hamster lungs. This peptide-based nanoparticle system can effectively transfect genes in lungs and deliver DIGs to inhibit SARS-CoV-2 variants and influenza virus in vivo, which provides the new insight into the drug delivery system for gene therapy against respiratory viruses.


Sujets)
COVID-19 , Sous-type H1N1 du virus de la grippe A , Virus de la grippe A , Grippe humaine , Nanoparticules , Animaux , COVID-19/génétique , Cricetinae , Humains , Sous-type H1N1 du virus de la grippe A/génétique , Grippe humaine/prévention et contrôle , Souris , Peptides/génétique , Peptides/pharmacologie , SARS-CoV-2/génétique
2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article Dans Anglais | MEDLINE | ID: covidwho-1917524

Résumé

Virus-cell fusion is the key step for viral infection in host cells. Studies on virus binding and fusion with host cells are important for understanding the virus-host interaction and viral pathogenesis for the discovery of antiviral drugs. In this review, we focus on the virus-cell fusions induced by the two major pandemic viruses, including the influenza virus and SARS-CoV-2. We further compare the cell fusions induced by the influenza virus and SARS-CoV-2, especially the pH-dependent fusion of the influenza virus and the fusion of SARS-CoV-2 in the type-II transmembrane serine protease 2 negative (TMPRSS2-) cells with syncytia formation. Finally, we present the development of drugs used against SARA-CoV-2 and the influenza virus through the discovery of anti-fusion drugs and the prevention of pandemic respiratory viruses.


Sujets)
COVID-19 , Orthomyxoviridae , Fusion cellulaire , Humains , Orthomyxoviridae/métabolisme , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/métabolisme , Pénétration virale
3.
Cell Discov ; 8(1): 62, 2022 Jun 30.
Article Dans Anglais | MEDLINE | ID: covidwho-1908152

Résumé

The emergence of highly transmissible SARS-CoV-2 variants has led to the waves of the resurgence of COVID-19 cases. Effective antivirals against variants are required. Here we demonstrate that a human-derived peptide 4H30 has broad antiviral activity against the ancestral virus and four Variants of Concern (VOCs) in vitro. Mechanistically, 4H30 can inhibit three distinct steps of the SARS-CoV-2 life cycle. Specifically, 4H30 blocks viral entry by clustering SARS-CoV-2 virions; prevents membrane fusion by inhibiting endosomal acidification; and inhibits the release of virions by cross-linking SARS-CoV-2 with cellular glycosaminoglycans. In vivo studies show that 4H30 significantly reduces the lung viral titers in hamsters, with a more potent reduction for the Omicron variant than the Delta variant. This is likely because the entry of the Omicron variant mainly relies on the endocytic pathway which is targeted by 4H30. Moreover, 4H30 reduces syncytia formation in infected hamster lungs. These findings provide a proof of concept that a single antiviral can inhibit viral entry, fusion, and release.

4.
Emerg Microbes Infect ; 11(1): 926-937, 2022 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-1730559

Résumé

Pandemic influenza virus and SARS-CoV-2 vaiants have posed major global threats to public health. Broad-spectrum antivirals blocking viral entry can be an effective strategy for combating these viruses. Here, we demonstrate a frog-defensin-derived basic peptide (FBP), which broadly inhibits the influenza virus by binding to haemagglutinin so as to block low pH-induced HA-mediated fusion and antagonizes endosomal acidification to inhibit the influenza virus. Moreover, FBP can bind to the SARS-CoV-2 spike to block spike-mediated cell-cell fusion in 293T/ACE2 cells endocytosis. Omicron spike shows a weak cell-cell fusion mediated by TMPRSS2 in Calu3 cells, making the Omicron variant sensitive to endosomal inhibitors. In vivo studies show that FBP broadly inhibits the A(H1N1)pdm09 virus in mice and SARS-CoV-2 (HKU001a and Delta)in hamsters. Notably, FBP shows significant inhibition of Omicron variant replication even though it has a high number of mutations in spike. In conclusion, these results suggest that virus-targeting FBP with a high barrier to drug resistance can be an effective entry-fusion inhibitor against influenza virus and SARS-CoV-2 in vivo.


Sujets)
, Sous-type H1N1 du virus de la grippe A , Animaux , Souris , Peptides , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme
SÉLECTION CITATIONS
Détails de la recherche